Detail publikace

Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness

TIANXIANG, G. RADULESCU, V.

Originální název

Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight,-Delta pau-Delta qu=lambda m(x)|u|q-2uinRN,$$\begin{equation*} \hspace*{3pc}-\Delta _pa u-\Delta _q u =\lambda m(x)|u|{q-2}u \quad \mbox{in} \,\, \mathbb {R}<^>N, \end{equation*}$$where N > 2$N \geqslant 2$, 1{0, 1}(\mathbb {R}N, [0, +\infty))$, a not equivalent to 0$a \not\equiv 0$ and m:RN -> R$m: \mathbb {R}N \rightarrow \mathbb {R}$ is an indefinite sign weight which may admit non-trivial positive and negative parts. Here, Delta q$\Delta _q$ is the q$q$-Laplacian operator and Delta pa$\Delta _pa$ is the weighted p$p$-Laplace operator defined by Delta pau:=div(a(x)| backward difference u|p-2 backward difference u)$\Delta _pa u:=\textnormal {div}(a(x)|\nabla u|{p-2} \nabla u)$. The problem can be degenerate, in the sense that the infimum of a$a$ in RN$\mathbb {R}N$ may be zero. Our main results distinguish between the cases p

Klíčová slova

regularity; equations

Autoři

TIANXIANG, G.; RADULESCU, V.

Vydáno

8. 2. 2024

Nakladatel

London Mathematical Society

ISSN

0024-6093

Periodikum

BULLETIN OF THE LONDON MATHEMATICAL SOCIETY

Ročník

56

Číslo

2

Stát

Spojené království Velké Británie a Severního Irska

Strany od

734

Strany do

755

Strany počet

22

URL

Plný text v Digitální knihovně

BibTex

@article{BUT186775,
  author="Gou {Tianxiang} and Vicentiu {Radulescu}",
  title="Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness",
  journal="BULLETIN OF THE LONDON MATHEMATICAL SOCIETY",
  year="2024",
  volume="56",
  number="2",
  pages="734--755",
  doi="10.1112/blms.12961",
  issn="0024-6093",
  url="https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961"
}