Detail publikace

Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions

BONANNO, G. CHINNI, A. RADULESCU, V.

Originální název

Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, the existence of non-trivial weak solutions for some problems with Navier boundary conditions driven by the p(center dot)-biharmonic operator is investigated. The proofs combine variational methods with topological arguments.

Klíčová slova

p(center dot)-biharmonic-type operators; Navier boundary value problem; variational methods

Autoři

BONANNO, G.; CHINNI, A.; RADULESCU, V.

Vydáno

2. 10. 2023

Nakladatel

EUROPEAN MATHEMATICAL SOC-EMS

Místo

BERLIN

ISSN

1720-0768

Periodikum

Rendiconti Lincei-Matematica e Applicazioni

Ročník

34

Číslo

3

Stát

Švýcarská konfederace

Strany od

727

Strany do

743

Strany počet

17

URL

BibTex

@article{BUT188311,
  author="Gabriele {Bonanno} and Antonia {Chinni} and Vicentiu {Radulescu}",
  title="Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions",
  journal="Rendiconti Lincei-Matematica e Applicazioni",
  year="2023",
  volume="34",
  number="3",
  pages="727--743",
  doi="10.4171/RLM/1025",
  issn="1720-0768",
  url="https://ems.press/content/serial-article-files/40204"
}