Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DRAHOŠOVÁ, M. SEKANINA, L.
Originální název
Coevolution in Cartesian Genetic Programming
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Cartesian genetic programming (CGP) is a branch of genetic programming which has been utilized in various applications. This paper proposes to introduce coevolution to CGP in order to accelerate the task of symbolic regression. In particular, fitness predictors which are small subsets of the training set are coevolved with CGP programs. It is shown using five symbolic regression problems that the (median) execution time can be reduced 2-5 times in comparison with the standard CGP.
Klíčová slova
Cartesian genetic programming, coevolution, fitness modeling, fitness predictors, symbolic regression.
Autoři
DRAHOŠOVÁ, M.; SEKANINA, L.
Rok RIV
2012
Vydáno
23. 3. 2012
Nakladatel
Springer Verlag
Místo
Heidelberg
ISBN
978-3-642-29138-8
Kniha
Proc. of the 15th European Conference on Genetic Programming
Edice
Lecture Notes in Computer Science
Strany od
182
Strany do
193
Strany počet
12
URL
http://www.springerlink.com/content/e47453258l284p60/fulltext.pdf
BibTex
@inproceedings{BUT91456, author="Michaela {Drahošová} and Lukáš {Sekanina}", title="Coevolution in Cartesian Genetic Programming", booktitle="Proc. of the 15th European Conference on Genetic Programming", year="2012", series="Lecture Notes in Computer Science", volume="7244", pages="182--193", publisher="Springer Verlag", address="Heidelberg", doi="10.1007/978-3-642-29139-5\{_}16", isbn="978-3-642-29138-8", url="http://www.springerlink.com/content/e47453258l284p60/fulltext.pdf" }