Přístupnostní navigace
E-application
Search Search Close
Project detail
Duration: 01.05.2024 — 31.12.2027
Funding resources
Ministerstvo zdravotnictví ČR - Program na podporu zdravotnického aplikovaného výzkumu na léta 2024 – 2030 - 1. VS
- whole funder (2024-04-12 - 2027-12-31)
On the project
Project is focused on the healing of critical segmental bone defects, which are made during a surgical treatment of cancers, using innovative scaffolds based on titanium. Porous composite scaffolds from titanium alloy Ti-Cu, Ti-Nb and Ti/hydroxyapatite will be prepared. Ti-Cu scaffolds display antibacterial effects and others scaffolds will be developed for improved osteointegration. All the materials are produced by extrusion base additive manufacturing (robocasting), a more cost effective and versatile additive manufacturing method that selective laser melting (SLM), commonly used for the fabrication of Ti-6Al-4V implants. The scaffolds will be tested in cocultures in vitro using human mesenchymal stem cells isolated from bone marrow, Saos-2 cells and endothelial cells for the study of osteogenesis and angiogenesis and THP-1 cells -derived macrophages for the study of immune reactions. Subsequently, the selected scaffolds will be tested in vivo for healing of critical bone defects in a model of rabbit and pig.
Keywordstitanium, composite, scaffold, osteosarcoma, implnat, prosthesis
Mark
NW24-10-00195
Default language
English
People responsible
Montufar Jimenez Edgar Benjamin, M.Sc., Ph.D. - principal person responsible
Units
Advanced Coatings- beneficiary (2023-06-28 - not assigned)
Results
DROTÁROVÁ, L.; SLÁMEČKA, K.; BALINT, M.; REMEŠOVÁ, M.; HUDÁK, R.; ŽIVČÁK, J.; ČELKO, L.; MONTUFAR JIMENEZ, E. Biodegradable WE43 Mg alloy/hydroxyapatite interpenetrating phase composites with reduced hydrogen evolution. Bioactive Materials, 2024, vol. 42, no. 12, p. 519-530. ISSN: 2452-199X.Detail