study programme

Power Systems and Power Electronics

Faculty: FEECAbbreviation: DPA-SEEAcad. year: 2023/2024

Type of study programme: Doctoral

Study programme code: P0713D060006

Degree awarded: Ph.D.

Language of instruction: English

Tuition Fees: 2500 EUR/academic year for EU students, 2500 EUR/academic year for non-EU students

Accreditation: 28.5.2019 - 27.5.2029

Mode of study

Full-time study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Electrical Engineering Without thematic area 60
Energetics Without thematic area 40

Study aims

The doctor study programme is devoted to the preparation of the high quality scientific and research specialists in various branches of power electronics, control technology, design of electrical machines, electric power generation and distribution, and electric power utilization.
The aim is to provide the doctor education in all these particular branches to students educated in university magister study, to make deeper their theoretical knowledge, to give them also requisite special knowledge and practical skills and to teach them methods of scientific work.

Graduate profile

The goal of the postgradual doctoral (PhD) study of the program "Power Systems and Power Electronics" is the education for scientific work in the area of power electrical engineering and power systems. Graduates of PhD find occupation either as scientific or research workers including industrial development, either as university teachers and in higher manager functions as well.

Profession characteristics

The graduate of the doctor study program "Power Systems and Power Electronics" obtains broad knowledge of subject of high power engineering. The knowledge is built mainly on theoretical background of the subject. Moreover, the graduate will obtain deep special knowledge aimed in direction of his/her thesis. The graduate will be able to perform scientific and/or applied research based on up to date theoretical knowledge. The graduate will be able to organize and lead a team of researchers in the studied subject.

Fulfilment criteria

Doctoral studies are carried out according to the individual study plan, which is prepared by the supervisor in the beginning of the study in cooperation with the doctoral student. The individual curriculum specifies all the duties determined in accordance with the BUT Study and Examination Rules, which the doctoral student must fulfill to successfully finish his studies. These responsibilities are time-bound throughout the study period, they are scored and fixed at fixed deadlines.
Students will write and pass tests of obligatory subject Exam in English before the state doctoral examination, compulsory elective courses in view of the focus of his dissertation, whereas at least two are selected from: Mathematical Modelling of Electrical Power Systems, New Trends and Technologies in Power System Generation, Selected problems from power electronics and electrical drives, Topical Issues of Electrical Machines and Apparatus), and at least two optional subjects (English for PhD students; Quoting in Scientific Practice; Resolving Innovation Assignments; Scientific Publishing from A to Z).
The student may enroll for the state doctoral exam only after all the tests prescribed by his / her individual study plan have been completed. Before the state doctoral exam, the student draws up a dissertation thesis describing in detail the aims of the thesis, a thorough evaluation of the state of knowledge in the area of the dissertation solved, or the characteristics of the methods it intends to apply in the solution.
The defense of the controversy that is opposed is part of the state doctoral exam. In the next part of the exam, the student must demonstrate deep theoretical and practical knowledge in the field of electrical engineering, electronics, electrical machines, and electrical apparatus. The state doctoral examination is in oral form and, in addition to the discussion on the dissertation thesis, it also consists of thematic areas related to compulsory and compulsory elective subjects.
To defend the dissertation, the student reports after the state doctoral examination and after fulfilling conditions for termination, such as participation in teaching, scientific and professional activity (creative activity) and at least a monthly study or work placement at a foreign institution or participation in an international creative project.

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study the students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The final dissertation thesis is expected to be submitted by the student by the end of the fourth year of studies.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

Issued topics of Doctoral Study Program

  1. Coordination and monitoring of voltage quality in the transmission system

    The paradigm of electrical network (EN) operation with connection and customer behaviour at different levels of the distribution system (DS) is changing. The transition can be characterized by a move away from central generators in the transmission system (TS) to the integration of distributed generation into the HV and LV DS; the installation and operation of related technologies and equipment in these systems to meet the sub-economic and technical objectives of DS users; and efforts to transfer part of the DS customers to direct TS users. However, this also fundamentally changes the conditions for ensuring and maintaining electromagnetic compatibility (EMC) and voltage quality (VQ) at the various DS and TS levels. One of the challenges across Europe is the implementation of an EMC and VQ system for PS and its integration into the existing concept for DS. Together with the ongoing efforts to standardise the limits of the levels of the different types of disturbances and the limits for the individual contributors, it is essential to investigate propagation of these phenomena in the EN, but also to identify the source of the disturbance. The aim of this work is to systematically map and characterize the propagation mechanisms of the main types of disturbances (rapid voltage changes and fluctuations, harmonics, asymmetries, etc.) and to identify the sources of each disturbance, focusing on the environment of a meshed TS network. The objective is to develop and validate methods for describing the propagation of interference in the PS, identifying its origin, while using data provided by standard Class A power quality analysers. Collaboration with TSOs and DSOs, and international scientific cooperation are foreseen. Part of the PhD studies includes an internship at a foreign research institute, e.g. TU Dresden, DE. Information: drapela@vut.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  2. Coordination and monitoring of voltage quality in the transmission system

    The paradigm of electrical network (EN) operation with connection and customer behaviour at different levels of the distribution system (DS) is changing. The transition can be characterized by a move away from central generators in the transmission system (TS) to the integration of distributed generation into the HV and LV DS; the installation and operation of related technologies and equipment in these systems to meet the sub-economic and technical objectives of DS users; and efforts to transfer part of the DS customers to direct TS users. However, this also fundamentally changes the conditions for ensuring and maintaining electromagnetic compatibility (EMC) and voltage quality (VQ) at the various DS and TS levels. One of the challenges across Europe is the implementation of an EMC and VQ system for PS and its integration into the existing concept for DS. Together with the ongoing efforts to standardise the limits of the levels of the different types of disturbances and the limits for the individual contributors, it is essential to investigate propagation of these phenomena in the EN, but also to identify the source of the disturbance. The aim of this work is to systematically map and characterize the propagation mechanisms of the main types of disturbances (rapid voltage changes and fluctuations, harmonics, asymmetries, etc.) and to identify the sources of each disturbance, focusing on the environment of a meshed TS network. The objective is to develop and validate methods for describing the propagation of interference in the PS, identifying its origin, while using data provided by standard Class A power quality analysers. Collaboration with TSOs and DSOs, and international scientific cooperation are foreseen. Part of the PhD studies includes an internship at a foreign research institute, e.g. TU Dresden, DE. Information: drapela@vut.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  3. Charging stations for electric vehicles as an element of electricity system

    The urgent need for the development of charging stations for hybrid cars and electric vehicles (EV) still shows as important in the context of the current gradual development of this type of transport. The theme is focused on energy analysis of the concept of charging stations with integrated accumulation and renewable energy sources. Based on the concept will be developed the mathematical models. It will be performed energy-economic analysis in order to verify the possibility of using the concept in this way to reduce the load of the network at the connection point. Direct possibility of cooperation on concrete solution with an energy company is expected. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Mastný Petr, doc. Ing., Ph.D.

  4. Islanding operation of distribution systems with distributed generation

    With the number of resources distributed in distribution systems (DS), the possibility of switching part of the DS to islanded operation (OP) is emerging, which can be seen, among other things, as a way to increase the reliability of supply in a defined part of the DS. However, in addition to its undeniable benefits, this is associated with a number of technical challenges. The aim is to develop technically correct, reliable and verified concept for islanding operation (IO) of dedicated part of distribution system with distributed generation; dealing mainly with definition of conditions and features necessary to reach successful transition to IO; correct and reliable detection of conditions for transition to IO and back to parallel operation; development of power sources (loads) control strategy, etc. An internship at a foreign research institution, for instance Aalborg University, DK, is expected. For future information email to: drapela@vut.cz.

    Tutor: Drápela Jiří, prof. Ing., Ph.D.

  5. Multiphase electrical machines

    This topic is focused on research of electrical machines with more than three-phase winding, e.g. five-phase, six-phase, dual three-phase machines.

    Tutor: Vítek Ondřej, doc. Ing., Ph.D.

  6. Optical diagnostics of electric arc

    Evaluation of electric arc temperature and particle density using optical emission spectroscopy. High speed camera imaging of an arc discharge channel. Characterization of construction materials diffusion into discharge volume and its influence on the electric arc properties. An internship on the INP Greifswald is mandatory during this doctoral study. The minimal internship length is one month.

    Tutor: Aubrecht Vladimír, prof. RNDr., CSc.

  7. Pole-changing electrical machines

    A wide range of electric machines are used for electric traction nowadays and with the growing importance of e-mobility, there is an increasing demand for further research and development. For electric traction, it is advantageous if the electric machine itself, without a gearbox, can provide high torque at low speeds as well as a wide speed range. The absence of a gearbox leads to material savings, higher reliability, smaller footprint and ultimately a reduced environmental impact. The proposed research topic addresses this challenge by aiming at the research and development of electrical machines with electronically switchable pole counts with the potential to achieve the above mentioned characteristics. The topic is expected to include the development of a simulation framework for this machine, the research and development of suitable configurations of stator winding designs and the investigation of dynamic phenomena during pole number switching. The results of the research and development will be verified by measurements on a prototype pole-switching machine to be developed during the course of this topic. The obtained outputs will be regularly published at conferences and in high-level journals.  During the research and development on this topic it will also be possible to consult the results with the staff of AVL Moravia s.r.o., the Linz Center of Mechatronics GmbH and JKU - Johannes Kepler Universität Linz, Institut für Elektrische Antriebe und Leistungselektronik, where a compulsory foreign internship of a PhD student is also expected.

    Tutor: Bárta Jan, doc. Ing., Ph.D.

  8. Probabilistic approach for optimization of distribution system operation

    The dissertation will be focused on research of a new probabilistic approach for evaluation of optimal operation of distribution network based on calculation and evaluation of fatal probability, probability of faults and continuity of supply. The methodology will respect already applied and new approaches optimized not only for national but also for international distribution networks operation conditions. The topic of the dissertation encompasses several areas that are focused on i.e. calculating of the earth fault levels, evaluating of fault duration and frequency, as well as area focused on calculation and analysis of the potential distribution on surface for evaluation of possible levels of touch and step voltages, transferred potential to low-voltage earthing systems and also assessment of the probability of human touch presence, fault ignition and touch/fault coincidence. The condition for successful defense of this work is to complete at least one month long internship at a foreign university. At present, university of TU Graz (Austria), Aaltoo University (Finland) may be considered relevant, but the specific place will be updated during Ph.D. study period.

    Tutor: Topolánek David, doc. Ing., Ph.D.

  9. Revision of current and proposal of novel calculation tool for earthing systems applicable for Czech national circumstances

    Over the past few years there has been a persistent pursuit of national power utility companies to improve the current state of earthing system calculation especially for cases with stratified soil structures. The currently widely used approach based on simple analytical formulas based on image method and with using mutual coefficients leads to complex dependencies and seems as quite unsuitable to be extended for such complex soil structures. There have been some attempts to improve the national utility standard that is being used by the utility companies for calculation of earthing systems, however, the current solution still seems as unsatisfactory. The possible way of improving the current situation can be seen in developing some kind of calculation software tool that could be referenced by the national utility standards as an alternative approach to the current practice and would be helpful especially for cases with worse soil structures. It is expected that the solution from such a software tool would be based on some more appropriate methods like solution of Laplace equation, method of finite elements etc. It would be further beneficiary to extend the tool capabilities by including the probabilistic approach of earthing system evaluation. Although this probabilistic approach is yet rather experimental, it can be expected that it will be allowed in the future as a complimentary to the state of the art deterministic approach. The bullet-points of this work can be expected as follows: - Analysis of currently used calculation and measurement procedures, the calculation requirements by the electrical utility companies. The analysis should be both on national and international (European) level. - Analysis and selection of adequate calculation method, selection of necessary input parameters. Analysis of appropriateness of selected solution and proposal of some improvements – recommendation on soil modelling, reinforced concrete earthing system modelling. - Cooperation with utility companies on verification of calculated results, carrying out necessary verification measurements etc. - Study possibilities of implementing probability evaluation of earthing systems.

    Tutor: Vyčítal Václav, Ing., Ph.D.

  10. The voltage regulation in distribution networks with a high proportion of stochastic sources

    An increasing proportion of stochastic resources in networks affect the voltage stability during the day. Variable power delivery to the grid from these sources causes fluctuations in voltage variations during the daily diagram. Current devices used to the voltage regulation are unable to provide the required voltage level at all points of the network. The aim is to describe new possibilities and means for voltage regulation in distribution system and design concept of this regulation with regard to the current development of the resource base. The condition for successful defense of this work is to complete at least one month long internship at a foreign university.

    Tutor: Mastný Petr, doc. Ing., Ph.D.

  11. Utilization of real-time simulation for advanced protection systems design

    New technologies of power system behavior research during transient phenomena open the area of advanced analysis focused to large protection systems operation during faults. The main aim of this dissertation is to extend possibilities of real time simulator RTDS about simultaneous tests in real time including real devices – hardware in the loop simulation. An internship at foreign university is included.

    Tutor: Toman Petr, prof. Ing., Ph.D.

1. round (applications submitted from 01.04.2023 to 30.04.2023)

  1. Optimization of plasma radiation transfer calculations

    Calculation of optimal band distribution for mean absorption coefficients. Evaluation of the electric arc configuration and plasma composition on frequency band boundaries. Comparison of different numerical optimization algorithms and their application to the problem of radiative heat transfer in plasma. An international internship is mandatory during the doctoral study. Expected place of internship is LAPLACE laboratory of the University of Toulouse.

    Tutor: Aubrecht Vladimír, prof. RNDr., CSc.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DPA-ET1Electrotechnical Materials, Material Systems and Production Processesen4Compulsory-optionalDrExS - 39yes
DPA-FY1Junctions and Nanostructuresen4Compulsory-optionalDrExS - 39yes
DPA-EE1Mathematical Modelling of Electrical Power Systemsen, cs4Compulsory-optionalDrExS - 39yes
DPA-RE1Modern Electronic Circuit Designen4Compulsory-optionalDrExS - 39yes
DPA-ME1Modern Microelectronic Systemsen4Compulsory-optionalDrExS - 39yes
DPA-TK1Optimization Methods and Queuing Theoryen4Compulsory-optionalDrExS - 39yes
DPA-AM1Selected Chaps From Automatic Controlen4Compulsory-optionalDrExS - 39yes
DPA-VE1Selected Problems From Power Electronics and Electrical Drivesen4Compulsory-optionalDrExS - 39yes
DPA-TE1Special Measurement Methodsen4Compulsory-optionalDrExS - 39yes
DPA-MA1Statistics, Stochastic Processes, Operations Researchen4Compulsory-optionalDrExS - 39yes
DPX-JA6English for post-graduatesen4ElectiveDrExCj - 26yes
XPA-CJ1Czech language en6ElectiveExCOZ - 52yes
DPA-EIZScientific Publishing A to Zen2ElectiveDrExS - 26yes
DPA-RIZSolving of Innovative Tasksen2ElectiveDrExS - 39yes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DPA-TK2Applied Cryptographyen4Compulsory-optionalDrExS - 39no
DPA-MA2Discrete Processes in Electrical Engineeringen4Compulsory-optionalDrExS - 39yes
DPA-ME2Microelectronic Technologiesen4Compulsory-optionalDrExS - 39yes
DPA-RE2Modern Digital Wireless Communicationen4Compulsory-optionalDrExS - 39yes
DPA-EE2New Trends and Technologies in Power System Generationen4Compulsory-optionalDrExS - 39yes
DPA-TE2Numerical Computations with Partial Differential Equationsen4Compulsory-optionalDrExS - 39yes
DPA-ET2Selected Diagnostic Methods, Reliability and Qualityen4Compulsory-optionalDrExS - 39yes
DPA-AM2Selected Chaps From Measuring Techniquesen4Compulsory-optionalDrExS - 39yes
DPA-FY2Spectroscopic Methods for Non-Destructive Diagnosticsen4Compulsory-optionalDrExS - 39yes
DPA-VE2Topical Issues of Electrical Machines and Apparatusen4Compulsory-optionalDrExS - 39yes
DPX-JA6English for post-graduatesen4ElectiveDrExCj - 26yes
XPA-CJ1Czech language en6ElectiveExCOZ - 52yes
DPA-CVPQuotations in a Research Worken2ElectiveDrExS - 26yes
DPA-RIZSolving of Innovative Tasksen2ElectiveDrExS - 39yes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DPX-QJAEnglish for the state doctoral examen4ElectiveDrExK - 3yes