Ing.

Karel Beneš

FIT, UPGM – vědecký pracovník

+420 54114 1297
ibenes@fit.vut.cz

Odeslat VUT zprávu

Ing. Karel Beneš

Publikace

  • 2024

    BENEŠ, K.; KOCOUR, M.; BURGET, L. Hystoc: Obtaining Word Confidences for Fusion of End-To-End ASR Systems. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Seoul: IEEE Signal Processing Society, 2024. s. 11276-11280. ISBN: 979-8-3503-4485-1.
    Detail | WWW

  • 2023

    KESIRAJU, S.; BENEŠ, K.; TIKHONOV, M.; ČERNOCKÝ, J. BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task. In 20th International Conference on Spoken Language Translation, IWSLT 2023 - Proceedings of the Conference. Toronto (in-person and online): Association for Computational Linguistics, 2023. s. 227-234. ISBN: 978-1-959429-84-5.
    Detail | WWW

    KIŠŠ, M.; HRADIŠ, M.; BENEŠ, K.; BUCHAL, P.; KULA, M. SoftCTC-semi-supervised learning for text recognition using soft pseudo-labels. International Journal on Document Analysis and Recognition, 2023, roč. 2024, č. 27, s. 177-193. ISSN: 1433-2825.
    Detail | WWW

  • 2022

    KIŠŠ, M.; KOHÚT, J.; BENEŠ, K.; HRADIŠ, M. Importance of Textlines in Historical Document Classification. In Uchida, S., Barney, E., Eglin, V. (eds) Document Analysis Systems. Lecture Notes in Computer Science. La Rochelle: Springer Nature Switzerland AG, 2022. s. 158-170. ISBN: 978-3-031-06554-5.
    Detail | WWW

    KOCOUR, M.; UMESH, J.; KARAFIÁT, M.; ŠVEC, J.; LOPEZ, F.; BENEŠ, K.; DIEZ SÁNCHEZ, M.; SZŐKE, I.; LUQUE, J.; VESELÝ, K.; BURGET, L.; ČERNOCKÝ, J. BCN2BRNO: ASR System Fusion for Albayzin 2022 Speech to Text Challenge. Proceedings of IberSpeech 2022. Granada: International Speech Communication Association, 2022. s. 276-280.
    Detail | WWW

    DVOŘÁKOVÁ, M.; HRADIŠ, M.; ŽABIČKA, P.; KOHÚT, J.; KIŠŠ, M.; BENEŠ, K. Využití PERO OCR při přepisu rukopisů. Archivní časopis, 2022, roč. 72, č. 1, s. 14-27. ISSN: 0004-0398.
    Detail | WWW

  • 2021

    KIŠŠ, M.; BENEŠ, K.; HRADIŠ, M. AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions. In Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021. Lecture Notes in Computer Science. Lausanne: Springer Nature Switzerland AG, 2021. s. 463-477. ISBN: 978-3-030-86336-4.
    Detail | WWW

    BENEŠ, K.; BURGET, L. Text Augmentation for Language Models in High Error Recognition Scenario. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. Proceedings of Interspeech. Brno: International Speech Communication Association, 2021. s. 1872-1876. ISSN: 1990-9772.
    Detail | WWW

  • 2020

    ŽMOLÍKOVÁ, K.; KOCOUR, M.; LANDINI, F.; BENEŠ, K.; KARAFIÁT, M.; VYDANA, H.; LOZANO DÍEZ, A.; PLCHOT, O.; BASKAR, M.; ŠVEC, J.; MOŠNER, L.; MALENOVSKÝ, V.; BURGET, L.; YUSUF, B.; NOVOTNÝ, O.; GRÉZL, F.; SZŐKE, I.; ČERNOCKÝ, J. BUT System for CHiME-6 Challenge. Proceedings of CHiME 2020 Virtual Workshop. Barcelona: University of Sheffield, 2020. s. 1-3.
    Detail | WWW

  • 2019

    BENEŠ, K.; IRIE, K.; BECK, E.; SCHLÜTER, R.; NEY, H. Unsupervised Language Model Adaptation for Speech Recognition with no Extra Resources. Proceedings of DAGA 2019. Rostock: DEGA Head office, Deutsche Gesellschaft für Akustik, 2019. s. 954-957. ISBN: 978-3-939296-14-0.
    Detail | WWW

  • 2018

    BENEŠ, K.; KESIRAJU, S.; BURGET, L. i-vectors in language modeling: An efficient way of domain adaptation for feed-forward models. In Proceedings of Interspeech 2018. Proceedings of Interspeech. Hyderabad: International Speech Communication Association, 2018. s. 3383-3387. ISSN: 1990-9772.
    Detail | WWW

  • 2017

    BENEŠ, K.; BASKAR, M.; BURGET, L. Residual Memory Networks in Language Modeling: Improving the Reputation of Feed-Forward Networks. In Proceedings of Interspeeech 2017. Proceedings of Interspeech. Stockholm: International Speech Communication Association, 2017. s. 284-288. ISSN: 1990-9772.
    Detail | WWW

    VESELÝ, K.; BASKAR, M.; DIEZ SÁNCHEZ, M.; BENEŠ, K. MGB-3 BUT System: Low-resource ASR on Egyptian YOUTUBE data. In Proceedings of ASRU 2017. Okinawa: IEEE Signal Processing Society, 2017. s. 368-373. ISBN: 978-1-5090-4788-8.
    Detail | WWW

*) Citace publikací se generují jednou za 24 hodin.