Detail oboru
Physical Electronics and Nanotechnology
FEKTZkratka: PP-FENAk. rok: 2011/2012
Program: Electrical Engineering and Communication
Délka studia: 4 roky
Profil
Cílem studia je poskytnout ve všech dílčích zaměřeních doktorské vzdělání absolventům vysokoškolského magisterského studia. Vytvořit interdisciplinární přehled současného vývoje, prohloubit teoretické základy ve zvoleném oboru, zvládnout metody vědecké práce, rozvíjet tvůrčí schopnosti a využít je při řešení vědeckého problému, který vyústí ve vypracování disertační práce přinášející vlastní původní přínos v daném oboru.
Klíčové výsledky učení
Absolvent oboru získá znalosti mezioborového charakteru z technických a přírodovědních disciplin na vysoké teoretické úrovni. Pro další samostatnou výzkumnou a vývojovou práci je vybaven vědomostmi zejména z fyziky polovodičů, kvantové elektroniky, matematického modelování a umí samostatně řešit problematikou spojenou s nanotechnologiemi. Uplatnění najde především jako vědecký pracovník základního nebo aplikovaného výzkumu při tvůrčím zavádění a využívání nových perspektivních a ekonomicky výhodných postupů v oblasti elektroniky, elektrotechniky, nedestruktivního testování spolehlivosti a materiálové analýze.
Profesní profil absolventů s příklady
Absolvent oboru získá znalosti mezioborového charakteru z technických a přírodovědních disciplin na vysoké teoretické úrovni. Pro další samostatnou výzkumnou a vývojovou práci je vybaven vědomostmi zejména z fyziky polovodičů, kvantové elektroniky, matematického modelování a umí samostatně řešit problematikou spojenou s nanotechnologiemi. Uplatnění najde především jako vědecký pracovník základního nebo aplikovaného výzkumu při tvůrčím zavádění a využívání nových perspektivních a ekonomicky výhodných postupů v oblasti elektroniky, elektrotechniky, nedestruktivního testování spolehlivosti a materiálové analýze.
Garant
Vypsaná témata doktorského studijního programu
- Study of dielectric and insulating materials with low permittivity
Zmenšování rozměrů v integrovaných obvodech (dnes 32 nm) vede ke zvyšování kapacit mezi vodiči, a ve svém důsledku ke snižování rychlosti přenosu signálu. Limitujícím faktorem pro zvyšování výkonu IC se tak stávají nikoli již vlastnosti samotných polovodičových prvků, ale rychlost přenášení signálu mezi nimi, a tedy kapacit. Jednou z možností pro snižování kapacit mezi vodiči je snižování permitivity dielektrických izolačních vrstev (kapacita je přímo úměrná permitivitě použitého materiálu). Dnes jsou patrné dvě cesty, buď nahrazování polárních vazeb Si-O vazbami méně polárními (Si-F, Si-C) nebo zvyšování porozity, tj. vytváření směsi původního dielektrika se vzduchem. Nově navrhované materiály s nízkou permitivitou přitom nesmějí výrazně omezovat současně používané křemíkové technologie a dále musí být schopny absolvoval všechny výrobní kroky včetně teplot cca 1100°C. Zpracování tématu si bude vyžadovat experimentální práce při přípravě vzorků, teoretické studium možností dosažení nízkých permitivit i měření elektrických vlastností vytvořených materiálových systémů. K dispozici je vybavení laboratoře dielektrické relaxační spektroskopie na Ústavu fyziky FEKT VUT v Brně s frekvenčním rozsahem cca 10 - 10E9 Hz, včetně héliového kryostatu pro teplotní interval 10 - 500 K.
Školitel: Liedermann Karel, doc. Ing., CSc.
- Study of dielectric materials with high permittivity
Materiály s vysokou permitivitou jsou zapotřebí pro nové aplikace, např. v integrovaných obvodech další generace (32 nm) či v kondenzátorech. Ve výrobě kondenzátorů jsou materiály s vysokou permitivitou žádoucí pro dosažení vyšší hustoty energie v kondenzátoru, a tedy ke zmenšování rozměrů. Ve výrobě polovodičových prvků je materiálů s vysokou permitivitou zapotřebí pro zachování hradlové kapacity při zvyšování tloušťky izolační vrstvy, vynuceném nárůstem svodových proudu při jejím ztenčování. Vzhledem k tomu, že hledané materiály s vysokou permitivitou, určené pro použití v křemíkových technologiích, musí být schopny projít jednotlivými výrobními kroky bez poškození, jedná se většinou o oxidy přechodných kovů (ZrO2, HfO2, Al2O3, Y2O3, La2O3, Ta2O5). Navíc musí být tyto materiály na křemíku dlouhodobě stabilní. Analogicky u dielektrik pro kondenzátory se musí jednat o látky schopné snést vypalování, tj. v podstatě o keramické materiály. Zpracování tématu si bude vyžadovat experimentální práce při přípravě vzorků, teoretické studium fyzikálních příčin vysoké permitivity i měření elektrických vlastností vybraných materiálů. K dispozici je vybavení laboratoře dielektrické relaxační spektroskopie na Ústavu fyziky FEKT VUT v Brně s frekvenčním rozsahem cca 10 - 10E9 Hz, včetně héliového kryostatu pro teplotní interval 10 - 500 K a řídícího softwaru.
Školitel: Liedermann Karel, doc. Ing., CSc.
Struktura předmětů s uvedením ECTS kreditů (studijní plán)
Zkratka | Název | J. | Kr. | Pov. | Uk. | Hod. rozsah | Sk. | Ot. |
---|---|---|---|---|---|---|---|---|
DTK2 | Aplikovaná kryptografie | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DET1 | Elektrotechnické materiály, materiálové soustavy a výrobní procesy | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DEE1 | Matematické modelování v elektroenergetice | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DME1 | Mikroelektronické systémy | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DRE1 | Návrh moderních elektronických obvodů | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DFY1 | Rozhraní a nanostruktury | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DTE1 | Speciální měřicí metody | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DAM1 | Vybrané kapitoly řídicí techniky | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DVE1 | Vybrané statě z výkonové elektroniky a elektrických pohonů | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DBM1 | Vyšší metody zpracování a analýzy signálů a obrazů | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DJA6 | Angličtina pro doktorandy | cs | 4 | Volitelný všeobecný | drzk | Cj - 26 | ano | |
DMA1 | Statistika. stochastické procesy, operační výzkum | cs | 4 | Volitelný všeobecný | drzk | S - 39 | ano |
Zkratka | Název | J. | Kr. | Pov. | Uk. | Hod. rozsah | Sk. | Ot. |
---|---|---|---|---|---|---|---|---|
DME2 | Mikroelektronické technologie | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DRE2 | Moderní digitální bezdrátová komunikace | cs | 4 | Volitelný oborový | drzk | P - 39 | ano | |
DTK1 | Moderní síťové technologie | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DTE2 | Numerické úlohy s parciálními diferenciálními rovnicemi | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DFY2 | Spektroskopické metody pro nedestruktivní diagnostiku | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DET2 | Vybrané diagnostické metody, spolehlivost, jakost | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DAM2 | Vybrané kapitoly měřicí techniky | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DBM2 | Vybrané problémy biomedicínského inženýrství | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DEE2 | Vybrané problémy z výroby elektrické energie | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DVE2 | Vybrané statě z elektrických strojů a přístrojů | cs | 4 | Volitelný oborový | drzk | S - 39 | ano | |
DMA2 | Diskrétní procesy v elektrotechnice | cs | 4 | Volitelný všeobecný | drzk | S - 39 | ano |
Zkratka | Název | J. | Kr. | Pov. | Uk. | Hod. rozsah | Sk. | Ot. |
---|---|---|---|---|---|---|---|---|
DQJA | Zkouška z angličtiny před státní doktorskou zkoušku | cs | 4 | Povinný | drzk | ano |