Detail projektu

Memristors and other unconventional circuit elements

Období řešení: 01.01.2018 — 31.12.2020

Zdroje financování

Grantová agentura České republiky - Standardní projekty

- plně financující (2018-01-01 - 2020-12-31)

O projektu

An ambitious objective of the project is to complete the circuit theory with missing parts that are necessary for efficient researching into and developing memristive devices and other unconventional building blocks for future computers, neuromorphic systems, bio-inspired circuits, and nanoelectronics. Based on the results of continuing cooperation with Dr. S. Williams’ team (Hewlett Packard Enterprise, Palo Alto, USA) and Professor L. Chua (Univ. of California, Berkeley, USA), these new pieces of knowledge will be exploited in the analysis of complex dynamic behavior of the memristors developed in labs of cooperating institutions, and also for developing circuit prospectively exploitable in M-CNNs (Memristor-Cellular Neural Networks) for new-generation nano-electronic information systems.

Popis česky
Ambiciózním cílem projektu je doplnění teorie obvodů o chybějící části, bez nichž není možný efektivní výzkum a vývoj memristivních systémů a dalších nekonvenčních stavebních kamenů pro výpočetní prostředky, neuromorfní systémy, bio-inspirované obvody a nanoelektroniku budoucnosti. Vycházejíc z výsledků kontinuální spolupráce s týmem Dr. S. Williamse (Hewlett Packard Enterprise, Palo Alto, USA) a prof. L. Chuy (Univ. of California, Berkeley, USA), tato nová znalostní báze bude využita pro analýzu složitého dynamického chování reálných memristorů, vyvíjených v laboratořích spolupracujících institucí, a pro vývoj obvodů potenciálně využitelných ke konstrukci M-CNNs (Memristor-Cellular Neural Networks) pro nanoelektronické informační systémy nové generace.

Klíčová slova
memristor; memcapacitor; meminductor; unconventional elements; nonvolatility; variational principle; potential function; modeling

Klíčová slova česky
memristor; memkapacitor; meminduktor; nekonvenční prvky; nevolatilita; variační princip; potenciálová funkce; modelování

Označení

GA18-21608S

Originální jazyk

angličtina

Řešitelé

Biolek Dalibor, prof. Ing., CSc. - hlavní řešitel
Biolek Zdeněk, Ing., Ph.D. - spoluřešitel
Biolková Viera, Ing. - spoluřešitel
Kolka Zdeněk, prof. Dr. Ing. - spoluřešitel

Útvary

Ústav mikroelektroniky
- příjemce (28.03.2017 - nezadáno)

Výsledky

BIOLEK, D.; BIOLEK, Z. About Fingerprints of Chua's Memristors. IEEE CIRC SYST MAG, 2018, vol. 18, no. 2, p. 35-47. ISSN: 1531-636X.
Detail

ASCOLI, A.; TETZLAFF, R. On Local Activity and Edge of Chaos in a NaMLab Memristor. Frontiers in Neuroscience, 2021, vol. 2021, no. 15, p. 1-30. ISSN: 1662-453X.
Detail

BIOLEK, D.; BIOLEK, Z.; BIOLKOVÁ, V. Duality of Complex Systems Built from Higher-Order Elements. COMPLEXITY, 2018, vol. 2018, no. 1, p. 1-15. ISSN: 1076-2787.
Detail

BIOLEK, D.; BIOLEK, Z.; BIOLKOVÁ, V. Coupled memristors, memcapacitors, and meminductors and their fingerprints. AEU - International Journal of Electronics and Communications, 2018, vol. 97, no. 12, p. 263-266. ISSN: 1434-8411.
Detail

BIOLEK, Z.; BIOLEK, D.; KOLKA, Z.; BIOLKOVÁ, V. Real-World Capacitor as a Memcapacitive Element. In 2018 New Trends in Signal Processing. New Trends in Signal Processing. Liptovský Mikuláš, Slovensko: IEEE, 2018. p. 1-6. ISBN: 978-80-8040-547-2. ISSN: 1339-1445.
Detail

BIOLEK, D.; BIOLEK, Z.; BIOLKOVÁ, V.; KOLKA, Z. Synthesis of Predictive Models of Nonlinear Devices: The Intutitive Approach. In Advances in Neural Networks and Applications 2018 (ANNA'18). Berlin, Offenbach: VDE VERLAG GMBH, 2018. p. 23-28. ISBN: 978-3-8007-4756-6.
Detail

BIOLEK, D.; BIOLKOVÁ, V. TiO2 memristor: a nano-device or a manifestation of natural principle?. Auckland, New Zealand: EMN, 2018. p. 16-17.
Detail

BIOLKOVÁ, V.; KOLKA, Z.; BIOLEK, D. Modeling tunneling effects and complex dynamics in tantalum oxide memristive devices. Auckland, New Zealand: EMN, 2018. p. 54-55.
Detail

KOLKA, Z.; BIOLKOVÁ, V.; BIOLEK, D.; BIOLEK, Z. Hardware Implementation of Bio-Inspired Models. In 2018 New Generation of CAS (NGCAS). Valletta, Malta: IEEE, 2018. p. 102-105. ISBN: 978-1-5386-7681-3.
Detail

VÁVRA, J.; BAJER, J.; BIOLEK, D. RF Single-Pole Double-Throw Switch Based on Memistor. In 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO). Mauritius: IEEE, 2018. p. 1-2. ISBN: 978-99949-0-470-9.
Detail

BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V.; KOLKA, Z. Taxicab geometry in table of higher-order elements. NONLINEAR DYNAMICS, 2019, vol. 98, no. 1, p. 623-636. ISSN: 1573-269X.
Detail

KOLKA, Z.; BIOLKOVÁ, V.; BIOLEK, D.; BIOLEK, Z. Emulation of Bio-Inspired Networks. Advances in Science, Technology and Engineering Systems Journal, 2019, vol. 4, no. 4, p. 21-28. ISSN: 2415-6698.
Detail

VÁVRA, J.; BAJER, J.; BIOLEK, D. RF Single-Pole Double-Throw Switch Based on Two-Port Memistor. In 2018 IEEE Radio and Antenna Days of the Indian Ocean, RADIO 2018. IOP Conference Series: Materials Science and Engineering. USA: IOP, 2019. p. 1-4. ISBN: 9789994904709. ISSN: 1757-8981.
Detail

BIOLEK, D.; BIOLKOVÁ, V.; BAJER, J.; VÁVRA, J. Active Electronically-Controlled Circulator Based on Mem-OTAs. In IEEE Radio and Antenna Days of the Indian Ocean. Francie: IEEE, 2019. p. 1-2. ISBN: 9789994906116.
Detail

KOLKA, Z.; VÁVRA, J.; BIOLKOVÁ, V.; ASCOLI, A.; TETZLAFF, R.; BIOLEK, D. Programmable Emulator of Genuinely Floating Memristive Switching Devices. In 26th IEEE Int. Conference on Electronics Circuits and Systems (ICECS 2019). Janov, Itálie: IEEE, 2019. p. 217-220. ISBN: 978-1-7281-0996-1.
Detail

BIOLEK, D.; VÁVRA, J.; BIOLEK, Z.; KOLKA, Z.; BIOLKOVÁ, V.; DOBEŠ, J. Chua’s Table as a Tool for Constructing Dual Networks. In 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). Bangkok, Thajsko: IEEE, 2019. p. 145-148. ISBN: 978-1-7281-2939-6.
Detail

BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V. Hamilton’s principle for circuits with dissipative elements. COMPLEXITY, 2019, vol. 2019, no. 1, p. 1-7. ISSN: 1076-2787.
Detail

BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V. Lagrangian for circuits with higher-order elements. ENTROPY, 2019, vol. 21, no. 11, p. 1-19. ISSN: 1099-4300.
Detail

BIOLEK, D. Duality rules in circuits containing memristors and other nonlinear elements (Keynote). Dresden, Germany: TU Dresden, 2019. p. 20-20.
Detail

BIOLEK, D.; BIOLKOVÁ, V.; BAJER, J.; VÁVRA, J.; KOLKA, Z. Memristor-based RF circulator. Dresden, Germany: TU Dresden, 2019. p. 51-51.
Detail

NTINAS, V.; ASCOLI, A.; TETZLAFF, R.; SIRAKOULIS, G. A Complete Analytical Solution for the On and Off Dynamic Equations of a TaO Memristor. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, vol. 66, no. 4, p. 682-686. ISSN: 1549-7747.
Detail

ASCOLI, A.; TETZLAFF, R.; MENZEL, S. Exploring the Dynamics of Real-World Memristors on the Basis of Circuit Theoretic Model Predictions. IEEE CIRC SYST MAG, 2018, vol. 18, no. 2, p. 48-76. ISSN: 1531-636X.
Detail

BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V.; KOLKA, Z. Higher-Order Hamiltonian for Circuits with (alpha,beta) Elements. ENTROPY, 2020, vol. 22, no. 4, p. 1-20. ISSN: 1099-4300.
Detail

BIOLEK, D.; BIOLEK, Z.; BIOLKOVÁ, V.; KOLKA, Z. X-Controlled Memristive Devices for Automatic Gain Control in RC Oscillators. In 2020 New Trends in Signal Processing (NTSP). Demanovská dolina, Slovakia: IEEE, 2020. p. 1-4. ISBN: 9781728161556.
Detail

ASCOLI, A.; MESSARIS, I.; DEMIRKOL, A.; TETZLAFF, R.; CHUA, L.; BIOLEK, D.; BIOLKOVÁ, V.; KOLKA, Z. Implementation of Logical and Memory Functions with Memristor Cellular Nonlinear Networks. In 2020 European Conference on Circuit Theory and Design (ECCTD). Sofia, Bulgaria: IEEE, 2020. p. 1-8. ISBN: 9781728171838.
Detail

BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V.; KOLKA, Z. All Pinched Hysteresis Loops Generated by (alpha, beta) Elements: in What Coordinates They May be Observable. IEEE Access, 2020, vol. 8, no. 1, p. 199179-199186. ISSN: 2169-3536.
Detail

BIOLEK, D.; BIOLEK, Z.; BIOLKOVÁ, V.; ASCOLI, A.; TETZLAFF, R. About v-i Pinched Hysteresis of Some Non-Memristive Systems. MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, vol. 2018, no. 1, p. 1-10. ISSN: 1024-123X.
Detail