studijní program

Matematické inženýrství

Fakulta: FSIZkratka: N-MAI-PAk. rok: 2023/2024

Typ studijního programu: magisterský navazující

Kód studijního programu: N0541A170033

Udělovaný titul: Ing.

Jazyk výuky: čeština

Akreditace: 16.7.2020 - 16.7.2030

Profil programu

Akademicky zaměřený

Forma studia

Prezenční studium

Standardní doba studia

2 roky

Garant programu

Rada studijního programu

Oblasti vzdělávání

Oblast Téma Podíl [%]
Matematika Bez tematického okruhu 100

Cíle studia

Navazující magisterský studijní program Matematické inženýrství si klade za cíl vybavit absolventy znalostmi pokročilých matematických disciplín se zaměřením na jejich aplikace v nejrůznějších oborech, především však oborech technické povahy. Důraz je kladen na využití moderní výpočetní techniky při řešení problémů pomocí efektivních metod aplikované matematiky, proto jsou v programu zařazeny potřebné předměty z oblasti informatiky. Nechybí ani angličtina na pokročilé úrovni.
Studenti magisterského programu si podstatně prohloubí a rozšíří vědomosti, které získali absolvováním stejnojmenného bakalářského studijního programu. Rozvinou také svoje schopnosti tvůrčí činnosti a řešení komplexních problémů matematické povahy. Pokud po skončení studia nebudou chtít nastoupit do praxe, ale dají přednost pokračování ve studiu, mohou nastoupit do doktorského studijního programu Aplikovaná matematika, který má na Ústavu matematiky FSI již dlouholetou tradici. Mohou samozřejmě také pokračovat v doktorském studiu na jiném ústavu VUT nebo na jiné vysoké škole v ČR či v zahraničí.

Profil absolventa

Absolventi programu budou vybaveni kvalitními znalostmi pokročilé matematiky zaměřenými na jejich využití při řešení nejrůznějších problémů, zejména problémů technické praxe. Budou mít dobrý přehled o metodách založených na matematické a numerické analýze včetně diferenciálních rovnic, algebře, diskrétní matematice, lineární i diferenciální geometrii, pravděpodobnosti a statistice, atd. Získají také důkladné vědomosti v oblasti moderní informatiky, takže se stanou teoreticky dobře vybavenými odborníky, kteří budou schopni úspěšně řešit nejrůznější, především inženýrské úlohy matematické povahy za efektivního využití výpočetní techniky. Budou dobře ovládat anglický jazyk a budou připraveni na vývojovou a inovační činnost na vysoké úrovni a na výzkumnou činnost v nejrůznějších technických i jiných oborech. Získají dovednost vytvářet matematické modely studovaných procesů a pomocí jejich analýzy řešit zadané problémy. Budou schopni samostatně pracovat s relevantní odbornou literaturou a aplikovat získané poznatky na řešení konkrétních problémů. Nebude jim činit potíže navrhnout či posoudit projekt tvůrčí činnosti, zapojit se do týmové práce či prezentovat svoje výsledky před odbornou komunitou.
Získané vzdělání zajistí absolventům snadné uplatnění na trhu práce. Díky kvalitním znalostem aplikované matematiky a informatiky bude o ně velký zájem v široké škále oborů. Naleznou snadné uplatnění zejména na řídících pozicích ve vývojových týmech nejrůznějších inženýrských profesí (strojírenství, elektrotechnika, elektronika, letecký průmysl, apod.) a v softwarových firmách. Velkou výhodou bude jejich dobrá orientace v nejmodernějších výpočetních technologiích a schopnost analytického myšlení. Jejich široké matematické vzdělání jim umožní uplatnění nejen v průmyslové praxi, ale také v mnoha dalších oblastech, např. v bankovnictví, ve státní správě, ve sféře obchodu, atd. Uplatní se i v základním a zejména v aplikovaném výzkumu, budou také dobře připraveni na následné doktorské studium.

Odborné znalosti:
Absolvent získá hluboké odborné znalosti ze základních disciplín matematiky a zejména aplikované matematiky. Bude ovládat klíčové pojmy, výsledky a postupy stěžejních oblastí matematiky, jako jsou diskrétní matematika a teorie grafů, matematická logika, analýza v komplexním oboru, funkcionální a numerická analýza, moderní metody řešení diferenciálních rovnic, geometrické algoritmy a kryptografie, matematické metody zpracování digitálních obrazů, pravděpodobnost a statistika, variační počet a optimalizace, finanční matematika, aj. Získá kvalitní znalosti z oblasti informatiky a využití počítačů pro řešení problémů matematické povahy. Bude ovládat angličtinu na pokročilé úrovni.

Odborné dovednosti:
Absolvent bude schopen aplikovat získané vědomosti na řešení úloh matematické povahy v nejrůznějších oblastech, především v oblasti inženýrské praxe. Bude mít přehled o důležitých souvislostech mezi různými odvětvími matematiky a tyto souvislosti bude schopen účinně aplikovat. Nebude mu činit problém formulovat a matematicky analyzovat složitější úlohy z oblasti přírodních, technických i jiných věd a také prezentovat svoje poznatky před odbornou komunitou. Bude schopen vytvářet matematické modely studovaných jevů a pomocí nich řešit zadané problémy. K tomu bude umět efektivně využívat moderní výpočetní techniku. Bude umět pracovat s odbornou literaturou, analyzovat získané poznatky a využívat je při své vlastní tvůrčí činnosti.

Obecné způsobilosti:
Absolvent bude způsobilý samostatného a odpovědného rozhodování o nejrůznějších postupech při řešení problémů, bude schopen řídit pracovní tým, koordinovat jeho činnost a nést zodpovědnost za jeho výsledky. Bude umět srozumitelným způsobem formulovat zadané problémy a navrhnout efektivní řešení. Vzhledem ke své jazykové vybavenosti nebude mít problém při spolupráci s odborníky ze zahraničí. Bude připraven dále se vzdělávat samostudiem, formou účasti na odborných přednáškách, seminářích a konferencích, kde bude připraven kvalitně prezentovat svoje výsledky. Zvyšování své odborné způsobilosti bude dosahovat také získáváním nových praktických zkušeností.

Charakteristika profesí

Studijní program Matematické inženýrství poskytuje absolventům široké možnosti zaměstnání. Kromě výrobní sféry v nejrůznějších průmyslových odvětvích nalézají uplatnění ve výzkumných institucích, v bankovnictví, ve školství, ve státní sféře atd. Jejich předností je znalost metod moderní aplikované matematiky a informatiky, takže mají schopnost tvorby matematických modelů nejrůznějších problémů, pomocí kterých pak tyto problémy za pomoci moderních informačních technologií efektivně řeší. Kromě logického myšlení získaného studiem matematiky jsou přidanou hodnotou absolventů jejich vědomosti z oblasti základních technických disciplín, které ještě zvyšují zájem o tyto absolventy ze strany průmyslových podniků. Absolventi studijního programu Matematické inženýrství nemají potíže uplatnit se na trhu práce, mají naopak možnost si vybírat z mnoha nabídek.

Podmínky splnění

Viz platné předpisy, Směrnice děkana Pravidla pro organizaci studia na fakultě (doplněk Studijního a zkušebního řádu VUT v Brně).
Organizace a průběh státní závěrečné zkoušky jsou dány vnitřními normami a předpisy VUT a fakulty.
Součástí státní závěrečné zkoušky je obhajoba diplomové práce a odborná rozprava. Obhajoba diplomové práce ověřuje schopnost studenta samostatně zpracovat zadané téma a prezentovat vlastní výsledky na přiměřené odborné úrovni. Odborná rozprava ověřuje studentovu orientaci v tématech, která jsou nosná pro odpovídající matematické vzdělání. Tématické okruhy pro odbornou rozpravu jsou zveřejněny na webu Ústavu matematiky FSI VUT.
Obě části státní závěrečné zkoušky jsou ústní a konají ve stejném termínu před komisí pro státní zkoušky, která byla jmenována děkanem na návrh rady studijního programu.

Vytváření studijních plánů

Pravidla a podmínky pro tvorbu studijních programů určují:
ŘÁD STUDIJNÍCH PROGRAMŮ VUT,
STANDARDY STUDIJNÍCH PROGRAMŮ VUT,
STUDIJNÍ A ZKUŠEBNÍ ŘÁD VUT (užívající „ECTS“),
SMĚRNICE DĚKANA Pravidla pro organizaci studia na fakultě (doplněk Studijního a zkušebního řádu VUT v Brně).

Dostupnost pro zdravotně postižené

Na VUT jsou zohledněny potřeby rovného přístupu k vysokoškolskému vzdělávání. V přijímacím řízení ani ve studiu nedochází k přímé či nepřímé diskriminaci z žádných důvodů. Studujícím se specifickými vzdělávacími potřebami (poruchy učení, fyzický a smyslový handicap, chronická somatická onemocnění, poruchy autistického spektra, narušené komunikační schopnosti, psychická onemocnění) je poskytováno poradenství v poradenském centru VUT, které je součástí Institutu celoživotního vzdělávání VUT. Podrobně tuto problematiku řeší Směrnice rektora č. 11/2017 „Uchazeči a studenti se specifickými potřebami na VUT“. Rovněž je vytvořen funkční systém sociálních stipendií, který popisuje Směrnice rektora č. 71/2017 „Ubytovací a sociální stipendium“.

Návaznost na další typy studijních programů

Studijní program úzce navazuje na bakalářský studijní program Matematické inženýrství, který je akreditován (a vyučován) také na Fakultě strojního inženýrství VUT v Brně. Absolventi programu mohou taktéž na stejné fakultě pokračovat ve studiu akreditovaného doktorského studijního programu Aplikovaná matematika.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

1. ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
SU2Funkcionální analýza IIcs4Povinnýzá,zkP - 26 / C1 - 13ano
SGA-AGrafy a algoritmyen5Povinnýzá,zkP - 26 / C1 - 13ano
SN3Numerické metody IIIcs4PovinnýklP - 26 / CPP - 13ano
SO2Optimalizace IIcs4Povinnýzá,zkP - 26 / CPP - 13ano
SP3Pravděpodobnost a statistika IIIcs4PovinnýklP - 26 / CPP - 13ano
0PPSPrůmyslový projekt (N-MAI)cs2PovinnýPX - 120ano
S1MVariační početcs4PovinnýklP - 26 / C1 - 13ano
SPJProgramovací jazyk Javacs4Povinně volitelnýklP - 13 / CPP - 26Skupina č. 1 typu Bano
VPWProgramování pro Windowscs4Povinně volitelnýzá,zkP - 26 / CPP - 26Skupina č. 1 typu Bano
6KPŘešení základních úloh mechaniky těles pomocí MKPcs4VolitelnýklP - 26 / CPP - 26ano
S2MStochastické modelovánícs3VolitelnýklC1 - 26ano
VTITeorie informace a kódovánícs4Volitelnýzá,zkP - 26 / CPP - 26ano
1. ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
SKFFunkce komplexní proměnnécs6Povinnýzá,zkP - 39 / C1 - 26ano
SMLMatematická logikacs5Povinnýzá,zkP - 26 / C1 - 26ano
SDRModerní metody řešení diferenciálních rovniccs5Povinnýzá,zkP - 26 / P - 26 / C1 - 26 / C1 - 26ano
SSPStochastické procesycs5Povinnýzá,zkP - 26 / CPP - 13ano
SOR-AZáklady optimálního řízeníen4Povinnýzá,zkP - 26 / C1 - 13ano
VAIAlgoritmy umělé inteligencecs4Povinně volitelnýzá,zkP - 26 / CPP - 26Skupina č. 2 typu Bano
SR0Rekonstrukce a analýza 3D scéncs4Povinně volitelnýklP - 13 / CPP - 26Skupina č. 2 typu Bano
SF0Aplikace Fourierovy analýzycs2VolitelnýP - 13 / CPP - 13ano
SALAplikace vícehodnotové logikycs4VolitelnýklP - 26 / CPP - 13ano
2. ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
SALAplikace vícehodnotové logikycs4PovinnýklP - 26 / CPP - 13ano
SD3Diplomový projekt I (N-MAI)cs4PovinnýVD - 65ano
SFIFinanční matematikacs4PovinnýklP - 26 / CPP - 13ano
SFMFuzzy množiny a aplikacecs4Povinnýzá,zkP - 26 / CPP - 13ano
SMMMatematické metody v teorii prouděnícs4Povinnýzá,zkP - 26 / CPP - 13ano
SSZSeminář k diplomové práci I (M-MAI)cs2PovinnýC1 - 13ano
SOR-AZáklady optimálního řízeníen4Povinnýzá,zkP - 26 / C1 - 13ano
SSJSpolehlivost a jakostcs4Povinně volitelnýzá,zkP - 26 / CPP - 13Skupina č. 3 typu Bano
0THÚvod do teorie hercs4Povinně volitelnýzá,zkP - 26 / C1 - 13Skupina č. 3 typu Bano
S1KMechanika kontinuacs4Volitelnýzá,zkP - 39 / C1 - 39ano
0ZCOdborné zdroje a citovánícs2VolitelnýCPP - 13ano
2. ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
TAIAnalýza inženýrského experimentucs5PovinnýklP - 26 / CPP - 13ano
SD4Diplomový projekt II (M-MAI)cs6PovinnýVD - 91ano
SSR-AMatematické strukturyen4PovinnýzkP - 26ano
SDRModerní metody řešení diferenciálních rovniccs5Povinnýzá,zkP - 26 / P - 26 / C1 - 26 / C1 - 26ano
SDSSeminář k diplomové práci II (M-MAI)cs3PovinnýC1 - 26ano
SVDVizualizace datcs4PovinnýklP - 13 / CPP - 26ano
VTRAlgebraická teorie řízenícs3Povinně volitelnýzkP - 26Skupina č. 4 typu Bano
SAVGeometrické algoritmy a kryptografiecs3Povinně volitelnýzkP - 26Skupina č. 4 typu Bne
S3MMatematický seminářcs2VolitelnýC1 - 26ano
7AZMTechnická angličtina pro NMSen0VolitelnýzkK - 1ano
Všechny skupiny volitelných předmětů
Sk. Počet předm. Předměty
Skupina č. 1 typu B 1 SPJ, VPW
Skupina č. 2 typu B 1 VAI, SR0
Skupina č. 3 typu B 1 SSJ, 0TH
Skupina č. 4 typu B 1 VTR, SAV